If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+60x=0
a = 2; b = 60; c = 0;
Δ = b2-4ac
Δ = 602-4·2·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-60}{2*2}=\frac{-120}{4} =-30 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+60}{2*2}=\frac{0}{4} =0 $
| 4(3r+4)=-8(2r+) | | 13/7=u/4 | | 5x-9+2x+12=180 | | -19-4b=-2b+9 | | 5-(1/4)x=15-(1/4)x | | 0.1s+7.18=0.8s+17.89 | | 10x+71=6x+43 | | -10-7z=-3 | | 12.4g=1.91+12.5g | | (x+70)=55 | | 20+2x+38=4x-10 | | 2x+197=975 | | p+15=2(4p-3) | | -4(8+6r)+24=154 | | 10(h+7)-4=76 | | -20u-2=-19u | | 349*n=3.94 | | 2y+24=2(4y+3 | | 5n-4-9n=6-5n | | 12-3n=-8n-7n | | 70-5x+210-45x=180 | | 2(4z-1)=3(z+2( | | 3y+18=13y-12 | | 70-5x=210-45x | | 5=1/2-4+b | | 63-2x=78-3x | | X+(x+10)=35 | | 20+4u=5u | | 25^1/2×5^–3=5x | | 6v+218=-712 | | -15x+-9=-15x-9 | | 2(x+25)=2x-30 |