If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+65=193
We move all terms to the left:
2x^2+65-(193)=0
We add all the numbers together, and all the variables
2x^2-128=0
a = 2; b = 0; c = -128;
Δ = b2-4ac
Δ = 02-4·2·(-128)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32}{2*2}=\frac{-32}{4} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32}{2*2}=\frac{32}{4} =8 $
| 7/4y+7/10=-y-4/5 | | 3x2-x-2=2x2-x-2 | | 4^(2x+3)=7^(3x-2) | | 8x-6x=28-12 | | 6.8=m/1.2 | | x+2/7=12/7x+1 | | 2x^2+14x+20=216 | | –=525.0.36p+0.26=3.86 | | 4-2(3x-2)=40 | | H=0.06x+10.50 | | 2x+5x=35+14 | | 4x+24=2-6x-18 | | -9.7-9.7=h | | 4+3a−12= | | 63+(8x-1)=180 | | 9x=9x=9x-9x | | 4+3a−12=a−18+15 | | 131=31+(n-1)*1 | | 9x-99999=2x | | 5x+5=4x-32 | | -10-5n=7(5-n)-7n | | X/3-5+x/5=11 | | 7n-24=4n | | x/3+4/7=x/7-4/7 | | -2(x+4.1)=x+2x+21.3 | | 3x-6-2=2x-4+7 | | 9(2x-7)=20 | | 25+5(x)=50+10(x) | | 4(2x-3)=4, | | 273=9+(n-1)*4 | | X+x+5x-2=180 | | 8x-2+9+10x=43 |