If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x+3=0
a = 2; b = 6; c = +3;
Δ = b2-4ac
Δ = 62-4·2·3
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{3}}{2*2}=\frac{-6-2\sqrt{3}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{3}}{2*2}=\frac{-6+2\sqrt{3}}{4} $
| 5+6h=–4–3h | | 5x^2-10x=5 | | -(b-(-12)=-18 | | 4x-13=-x+12 | | 8(x-2)+6x=24 | | Y-4y=23 | | 7x+8x-60=80-5x | | W/w-2-5w-3=w-2/5w^2-13w+6 | | x+2/5=13/10 | | -10+2x=-x+11 | | 2x+x+4/6=6 | | .95x=57 | | 3x+45-6x=6x-18 | | m-6/3=3 | | -2x-6=3x+14 | | 4u+4(u+8)=-16 | | -5x+8x-8=3(x-2)-6 | | 8+q+3=-2 | | 7x+2x+2=2x+9 | | y/7+4=-11 | | 16d+23=14(d−2)16d+23=14(d−2) | | .9(x^2)-19x=-40 | | 42.41=9g+3.62 | | -10c+9c=12 | | -3x-21=14+2x | | 2-3(4-x)=5(2-x)=4x | | .66p=-11 | | 4.9(x^2)-19x=40 | | 8+2p-6=8p+5-5p | | 30-y+y=6 | | -3x-x11=3-x | | 3x+8x-7x=7 |