If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-22=0
a = 2; b = 6; c = -22;
Δ = b2-4ac
Δ = 62-4·2·(-22)
Δ = 212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{212}=\sqrt{4*53}=\sqrt{4}*\sqrt{53}=2\sqrt{53}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{53}}{2*2}=\frac{-6-2\sqrt{53}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{53}}{2*2}=\frac{-6+2\sqrt{53}}{4} $
| 4-3(2x-1)=7+4(5-x) | | 6(3w+2)/5=3 | | 90+90+75+x=360 | | x/3-2=8x/4+5 | | f+4/2=8 | | 140+90+86+z=360 | | /10x+1=8x+15 | | 65+64+90+y=360 | | (E+5)x5=30 | | 58+90+x=360 | | 4x+3-(x+1)+5=5x+8 | | 2w-7=8 | | 5a-a=-8 | | 6k+5=8 | | m/3+5=14 | | 90+x+20+x=360 | | 12d+18=20d | | 113+125+76+y=360 | | (3)3y-4y+1=0 | | 141+90+x=360 | | 2/(a-7)-5/4a=0 | | 104+104+b+b=360 | | 119+90+90+x=360 | | 10y–3=2 | | 37n+18,73=12n | | 161+161+x+x=360 | | 5m+3=2m+1 | | 3(x-5)+2(2×-3)=0 | | 2z=-2.4 | | 106+90+x=360 | | 3x-3=1x+6 | | 114+102+x=360 |