If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-2590=0
a = 2; b = 6; c = -2590;
Δ = b2-4ac
Δ = 62-4·2·(-2590)
Δ = 20756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20756}=\sqrt{4*5189}=\sqrt{4}*\sqrt{5189}=2\sqrt{5189}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{5189}}{2*2}=\frac{-6-2\sqrt{5189}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{5189}}{2*2}=\frac{-6+2\sqrt{5189}}{4} $
| 16p=64 | | 16p=654 | | u+8.7=−1.4 | | u+8.7=−1.4u | | y-1.5=10 | | 6b–29=47+2b | | 1/3x-3/2=-1 | | 5{x-(4x-5})=3-2x | | 7xx-10=18 | | 9x-4=6x±29 | | 12+3(x–4)=6 | | 1-2x-12-7x=3x+10-5x | | 2.5(j+40)=-4 | | 4xx-20=0 | | 9xx-25=20 | | 1,2^(n)=21 | | 2=10b-b^2 | | 4x+10=162x | | -x-7=4(x+2) | | 3y-10=4y+5 | | x+x+0,15x=645 | | -x+34=4(2x-5) | | 2(4x+2)=-2x-36 | | 4x-5=4x-15 | | 2⁶/2⁵=x | | 3(4x-4)=12 | | 8•x+10=66 | | F(x)=-3x²-6x+15 | | (5x–19)°+(2x–11)°=180° | | x=0.2*x+0.4 | | n/7=9/21 | | 3x²-1=48 |