If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-5=0
a = 2; b = 6; c = -5;
Δ = b2-4ac
Δ = 62-4·2·(-5)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{19}}{2*2}=\frac{-6-2\sqrt{19}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{19}}{2*2}=\frac{-6+2\sqrt{19}}{4} $
| 76+3x–7x=–36+4x | | 3x(x-5)-3×^2=-30 | | −17+11x=5 | | 6x+54=125 | | 3|5-3/2x|+5=17 | | 4x–5+3x=2x+21+3x | | 3x+3x+12=4x+18 | | 8v=14+v# | | −19+9t=26 | | 3x+2÷2+4x+5÷4-3x-8÷8=16 | | 10+8x=−38 | | 10+8v=−38 | | 2x^2+12x=–7 | | −3+9t=−48 | | 13+3y=25 | | x^2+40x-1125=0 | | −12+7q=−40 | | −48+10q=32 | | 4x-42+2x^2=0 | | −5+15p=−20 | | t^2+5t-25=0 | | 8+4y=−28 | | 1+8z=9 | | 50+7p=20 | | 36+2p=16 | | 18+5q=3 | | -65+6x=-11 | | 14=5x=28 | | 6/x-1+5x/x+1=5 | | 9w-5=49 | | (3/2x-1)(3/2x+1)= | | 7-2g=2-5g |