If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-95=0
a = 2; b = 6; c = -95;
Δ = b2-4ac
Δ = 62-4·2·(-95)
Δ = 796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{796}=\sqrt{4*199}=\sqrt{4}*\sqrt{199}=2\sqrt{199}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{199}}{2*2}=\frac{-6-2\sqrt{199}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{199}}{2*2}=\frac{-6+2\sqrt{199}}{4} $
| 3x+7(2x-9)=12 | | 39-(2c+4)=2(c=5)=c | | 9(d+3)=4(d-7)+5 | | -4+6(-4x+3)=34 | | -(5.6x-2.2)=3x+4.7-3.6x | | -6(2x+8)=-8-7x | | -5x+10=-8 | | x^2+8x+60=0 | | -7k+12=-9 | | 3/8x+1/5x=46 | | 3(2c+4)=13 | | x+5/2=3/4 | | -0.5x+6=3.5x-12 | | (-1+5i)(-2-3i)=0 | | x=10+15/9 | | Y=5p^2-9p+4 | | 2|25x|=100 | | -7y-1=34 | | 2/3x=12-1/3x | | -4+8(8a+7)=-13-a | | 4x-2+5x-3+10x-20=180 | | (7x-3)/5=8 | | 7z-1=3+6z | | 2m=1/9=12-7m/6 | | -7Y-3=5y+15 | | 8y+12=-2y+2 | | 6(x+5=-2(x-3) | | 2x(3x+1)-x=3-2(2x+2) | | -2(-10x-4)=-3(-6x+6) | | 2+3(2c+4)=13 | | x/2+6=x/3 | | 2.x+48=78 |