If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x=135
We move all terms to the left:
2x^2+6x-(135)=0
a = 2; b = 6; c = -135;
Δ = b2-4ac
Δ = 62-4·2·(-135)
Δ = 1116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1116}=\sqrt{36*31}=\sqrt{36}*\sqrt{31}=6\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{31}}{2*2}=\frac{-6-6\sqrt{31}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{31}}{2*2}=\frac{-6+6\sqrt{31}}{4} $
| 4c-5=114c−5=11 | | 36^2x+2=6 | | 3x+14+7×-4=180 | | 13+x=4-2x | | 23/100=x/18 | | -3+2x=1/2(2x+16) | | 8+4h=2h-10 | | -3+2x=1/2(2x+12) | | 2x+8;x=7 | | 4p=156 | | 9x+2=72+7x | | y=2*1^ | | -6+4w=2 | | g+9.9=13.2 | | 85=16z85=16z | | 2x-6=93 | | 3(x+4)^2−20=16 | | z/0.26=1700 | | 4x-2=3x+50 | | -10=u/3-7 | | 4x-42=2x-18 | | 13/v=14 | | -5=1-6w | | 6=(3)/(2)x+3 | | 5d+5=-10 | | i/3.9=170 | | -4-9z=-10z | | 1.6=x/3.9 | | -2z+3×7z=-12 | | 2(-3x-4)=46 | | 101=-11(8-7m)-13(1-3m) | | 6+6x+3x-5=28 |