If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x=40
We move all terms to the left:
2x^2+6x-(40)=0
a = 2; b = 6; c = -40;
Δ = b2-4ac
Δ = 62-4·2·(-40)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{89}}{2*2}=\frac{-6-2\sqrt{89}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{89}}{2*2}=\frac{-6+2\sqrt{89}}{4} $
| 6/z-9=7 | | 2842=29(x+35) | | 5(3n+1)=2(6n+7) | | x^1/3=-1/3 | | 2=14-2k | | (-4)(5)=x | | n/2+13=17 | | -1.01=w+5.3 | | 20=4+2y | | 8+5r+5+12=r+5 | | 7+3(x–4)–10=-45 | | x+-x=1 | | -5r+4r+8=1-8r | | -b+-17b+29b-38b+-22=32 | | x+9.9=5.1 | | 3x(4x-5)=12x-5 | | (1/5)x=18 | | 5=4m-5-2 | | (4)(-1)=x | | 4(2x-3)=12.5 | | 5733=49(p+40) | | 5y-2=-22 | | (2)(2)(-1)=x | | h/9=3=2 | | c/6+8=10 | | 2x+15+3x=12x-20 | | 3+3(x-4)-10=-45 | | 6w-14=34 | | 1068=6(x+19) | | 16+3+5p-3p=3+4p | | -3x=2(x+3) | | |k+1|=1 |