If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+7=79
We move all terms to the left:
2x^2+7-(79)=0
We add all the numbers together, and all the variables
2x^2-72=0
a = 2; b = 0; c = -72;
Δ = b2-4ac
Δ = 02-4·2·(-72)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*2}=\frac{-24}{4} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*2}=\frac{24}{4} =6 $
| -13=x-2 | | 9y=(7-3y)/7 | | 5+x=-11+8 | | x+(x+15)+(x/2)=80 | | 3x+2x-25=7 | | 16x*9x=800000 | | y+1.5=8.17 | | 4x+7=2x—5 | | B4x+7=2x—5 | | 5/2x=31/6 | | ((5x12)/3)=÷30-50= | | 69.93+21.51y(0.004056-y)=100-16.39y(1+y) | | 45°+3x+16+68=180° | | 2p+6=2p+6 | | 68.49+22.22y(0.003811-y)=100-17.24y(1+y) | | |3x+9|=8 | | 64.52+21.74y(0.004563-y)=100-15.63y(1+y) | | 180-(9x+12)=0 | | 17.24+22.99y(0.003709-y)=100-68.03y(1+y) | | 9x*16x=300000 | | 9x+12-180=0 | | 32(0)-16y+8=0 | | 17.24+22.22y(0.003811-y)=100-68.49y(1+y) | | 11/8x+5/4=5/4x | | 15x+2650=25x+1450 | | 16.39+20.83y(0.004128-y)=100-70.92y(1+y) | | 2t-10=65-t | | 18.18+20.41y(0.003773-y)=100-71.43y(1+y) | | 79.37+14.08y(0.010288-y)=100-8.7y(1+y) | | 64.52+22.22y(0.004534-y)=100-15.38y(1+y) | | 83.33+13.16y(0.016872-y)=100-5.41y(1+y) | | 2t+15=180 |