If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+800x-19200=0
a = 2; b = 800; c = -19200;
Δ = b2-4ac
Δ = 8002-4·2·(-19200)
Δ = 793600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{793600}=\sqrt{25600*31}=\sqrt{25600}*\sqrt{31}=160\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(800)-160\sqrt{31}}{2*2}=\frac{-800-160\sqrt{31}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(800)+160\sqrt{31}}{2*2}=\frac{-800+160\sqrt{31}}{4} $
| 3/4x-3/4-5/3x-20/3=8/5x-48/5+5/12 | | x2+10x-432000=0 | | 5x+12x=49 | | X2-13x=90 | | d2-19d+90=0 | | 6x+12=2x-20 | | 30x-150=24x | | 2x+44=4x+22 | | 5/7(5.6-21y)=24(5/8-2/3y) | | x2-4x+4=(1-x)(x-2) | | (x^2-9)(3x+6)=0 | | (+x^2-9)(3x+6)=0 | | (x2-9)(3x+6)=0 | | 8x2+9=0 | | 4x-2(3x-7)=5x-7 | | 2x2-34=0 | | 40-3y=28 | | 5y-7/12-y-5/8=5 | | 2x+3=7(x+4) | | 3(2-5x)+3+x-(1+2x)=5x+7 | | 40-2y=26 | | 13(y-0.7)-1.2(y+10)=50y-97.5 | | 40-3y=25 | | x/0.75=135 | | 7+4x/2=x/2 | | 5+8+7=5x | | 3x+45=10x-4 | | 5x-28=28 | | -17-(4x-1)+5*1/3(2-x)=6*1/2 | | 3(4x+8)=5(5x+4) | | 4x-x=135 | | x-4x=-28-14 |