If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+8=28
We move all terms to the left:
2x^2+8-(28)=0
We add all the numbers together, and all the variables
2x^2-20=0
a = 2; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·2·(-20)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*2}=\frac{0-4\sqrt{10}}{4} =-\frac{4\sqrt{10}}{4} =-\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*2}=\frac{0+4\sqrt{10}}{4} =\frac{4\sqrt{10}}{4} =\sqrt{10} $
| -50+13x=98+9x | | -116+13x=84+3x | | -58+9x=132-x | | 8x–18=3x+11 | | -5+9-22=x | | 605=11x | | 4x-69=-x+21 | | 1/5*x=3 | | Y=-2x^2-24x+81 | | -2x^2-28x+80=0 | | 7x=408 | | (8x-1)+(5x+36)+(7x+19)+(6x-2)=494 | | -2x^2-28x=80 | | 10x=1.010 | | 8x=824 | | 972/x=54 | | x/972=54 | | 2(2x)+50x=702 | | 2x-8=52 | | 4p+92=9p–23 | | 8^x-5=16 | | 2x.702=2x/2+50 | | 8−10x=4+6x4-10x=6x4−10x=6x | | 8−10x=4+6x | | -3(c+1)04c=60 | | -3(c+1)=4c=60 | | (8x-1)+(5x+36)+(7x+19)=494 | | x2−16x−21=−12x | | x=54/972-100x54 | | 100xx=+.06 | | 100xx=0.05 | | 2/8=x/36 |