If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+8x+5=0
a = 2; b = 8; c = +5;
Δ = b2-4ac
Δ = 82-4·2·5
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{6}}{2*2}=\frac{-8-2\sqrt{6}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{6}}{2*2}=\frac{-8+2\sqrt{6}}{4} $
| 2(10r-7)-2(1+10r=-7+2r | | 10=3x+14 | | 1000x=25 | | 10=10x+14 | | 4+2p=10( | | X=-x+54 | | 6y+3=6(y+3) | | 8y^2-56y-144=0 | | 0.5c-2c+3.49=4 | | 3x-98=x-4 | | 3-6y=51 | | -7k=10=30 | | -2x+354=x+114 | | 2x+4/3-2x/3=5 | | 5-2(x-9)=13 | | -2=6/7*x | | 7-j=4 | | 133=0.7(200-c) | | 2(12b+7)+9b+1+9b+1=180 | | 2x+4=-x+298 | | x=(6x –10)° | | 3(x-4)+2x=13 | | 10a-2=4a-14 | | 0.333333(9x+3)=3x+1 | | 21=15+5b | | 43+90+b=180 | | 40m=5m | | 3x-5=-2x-4 | | n=14/4=1 | | 7p+7=6p | | x(x+9)=4x^2+5 | | 5(3x-7)-(2x-5)+2=3(2-x)-(x-5)+7 |