If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+8x-122=-2
We move all terms to the left:
2x^2+8x-122-(-2)=0
We add all the numbers together, and all the variables
2x^2+8x-120=0
a = 2; b = 8; c = -120;
Δ = b2-4ac
Δ = 82-4·2·(-120)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-32}{2*2}=\frac{-40}{4} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+32}{2*2}=\frac{24}{4} =6 $
| 18=6u= | | 32=p+222/17 | | p2+9p+27=7 | | q/8+10=20 | | 6-2n=-4 | | 30=3(y-6) | | b+12=34 | | m18=2 | | 9=n/3-7 | | -5.7=1.9z+1.9 | | b+20/5=10 | | -3l-2=10 | | -2(3x-9)=-8x | | r-36+10=50 | | 2(2)+-18x+33=-7 | | -3(y-7)=-7y-11 | | (2x+1)*3=5*(1-x) | | 2x2+6x-36=0 | | z/3+15=19 | | 4r-25=75 | | -6(u-3)=-9u-12 | | p/6+20=14 | | 3x+15+45=180 | | 10+7b=2+8b | | 7g=–4+9g | | -11+10(p+10)=4-5(2p=11 | | 0.8(10x+15)=4.1(0.2x+5) | | -e=-1 | | f/1+5=3 | | 32=p+22217 | | -9u+31=5(u+9) | | 3^2−10x+4=0 |