If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+8x-12=0
a = 2; b = 8; c = -12;
Δ = b2-4ac
Δ = 82-4·2·(-12)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{10}}{2*2}=\frac{-8-4\sqrt{10}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{10}}{2*2}=\frac{-8+4\sqrt{10}}{4} $
| (13+2x)+(17+2x)=396 | | 18-7y=-4 | | x^2+(x+2)^2=10^2 | | 14x+11=13x-16 | | 7/3x-3=3x/72=3x+1/9x+3 | | -11x+4=25 | | X+y+14=32 | | --11x+4=26 | | 6^3x=4^x-3 | | 2y+4y=6-3y | | -7.8-2y=3.2 | | 7(3x+9)=23-(x+15) | | -8z+9-3z=-13 | | 4(x+3)-9x=3(x+2)+x | | 3(y+1)-5(y-3)=8y+18-10y | | (2x+1)=7 | | 13+5^(2x-1)=108 | | −8x−5=7x+2 | | -19=-2x-4 | | 52n+75n=25n | | .5=5x/50 | | 13+5^2x-1=108 | | 7b-1=-29 | | w/4+13=34 | | 3+4b=23 | | 27=x/5-11 | | -22=10k-2 | | 10x=4x²-6 | | .5n+2.5=8 | | 6(d/3-5=34 | | 0.2-1.8=0.7x-0.8 | | 5b+4b-5=13 |