If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+8x-42=0
a = 2; b = 8; c = -42;
Δ = b2-4ac
Δ = 82-4·2·(-42)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-20}{2*2}=\frac{-28}{4} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+20}{2*2}=\frac{12}{4} =3 $
| 10(x+4)=3(5x-5) | | 2y4-y3-7y2=0 | | ,-2×-2y=8 | | 4m-3/7=m+0.35/3 | | 2y+10=12y-4 | | 125+13x=21x-48 | | 23/x=4 | | 1.4x-8=7.4+10 | | 40=2x+6 | | -16x+24=8x-24 | | y-0.9y=360 | | 12y+30=6y+60 | | 15(3x+15)=20(x+20) | | 182+x2=302 | | 65=+9b+38 | | 65=+9b+3 | | t+2=-9t-5(8÷2(49)+8) | | -4x+20=x-5 | | 2.5/7.5=x/12 | | -(5y+6)-(-4y-7)=2 | | -12t+9=-145 | | (32)+(3x+9)=(5x-5) | | 10^3x-4=75 | | 35x+20=-40x+45 | | 7n+34-2n=-2-2n+16n | | 23n+4=–26 | | 5w-6=7-7w | | 18x+40x-120=468 | | x-10/4=6 | | 5-2Lx100=50 | | 14.95=c-7.55 | | 35-7x=x-7 |