If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+9x-9=0
a = 2; b = 9; c = -9;
Δ = b2-4ac
Δ = 92-4·2·(-9)
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{17}}{2*2}=\frac{-9-3\sqrt{17}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{17}}{2*2}=\frac{-9+3\sqrt{17}}{4} $
| (x+3)+5=7 | | 0.9/0.9=a/10 | | 13-2x=–15 | | 3(x)+4=12 | | 4(4x+1)=-12 | | 14=6u+8(u+7) | | 8x(9-x)=24 | | 4n+2=6(1/3n-2/3) | | 4x-10=3x5 | | 20=4(v-5)+6v | | 56n+8=2n+36 | | 3(x+6)+7(2+6x)=57 | | 5/10=w | | -31-4x=-5-25x-5 | | 23x-5=7x+5 | | 0.2(x-5)=18 | | 3=-6(v+8)-(5v-7) | | 5(x-5)+3x=31 | | 30y-3y=18 | | 2^x=260 | | (4+2)*r=5 | | Y+.20y=54 | | 53x=-83 | | -31-4=-5-25x-5 | | 25x²+×10=0 | | 5y-4=5y-4 | | 5(5+2m)=25 | | 10p=60-28 | | 3(5y-6)=27 | | 20/15=40/n | | -5v+7(v+3)=1 | | 6m+2=32,m= |