If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x-1=0
a = 2; b = 1; c = -1;
Δ = b2-4ac
Δ = 12-4·2·(-1)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3}{2*2}=\frac{-4}{4} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3}{2*2}=\frac{2}{4} =1/2 $
| 5p+28+12p=90 | | 7x-2÷4=3x/2 | | 2|y+4|=10 | | 2x+15x=17 | | -4g+20=4 | | 3x/6=3+x | | 6-6x=7x-10x=9 | | 180(n-2)/n=120 | | 38=-6w+4(w+6) | | -8b-3=45 | | 2(x-3)÷5=-2(x+2)÷4+x | | -8b-3=43 | | X2+2x=63 | | 4(p+2)=5p+13 | | d+5/12=11/12 | | 5x−21=8x−30 | | 76=y/6 | | -16=-3u+7(u-8) | | -9d+15=96 | | 4x+15-5x+3=90 | | -9d+15=52 | | X2+2x=72 | | 8x-5=36 | | 1+2z=4z+√5+2z | | -7w+4=-52 | | X2-4x=45 | | -2x+40=1/3x-30 | | 3y+5=y+19 | | 4x+15+5x+3=90 | | 2,5y+14=4,5y | | -4q-12=8 | | 4(2x-3)=4x+3 |