If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x-20=0
a = 2; b = 1; c = -20;
Δ = b2-4ac
Δ = 12-4·2·(-20)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{161}}{2*2}=\frac{-1-\sqrt{161}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{161}}{2*2}=\frac{-1+\sqrt{161}}{4} $
| 2m+7=-m+3 | | 8x-15=6-3x | | 10-x=5x+6 | | 14/5=2/3+r | | 53000=59000x | | 12m+8m=21m | | t+16,2=48 | | 35=-16t^2+60t+5 | | 6300=50x | | 2a+12-3a-15=35 | | 3/4=x3/4 | | 3943.75=13.75d-200 | | 7(x+3)=6+7x | | m=2500+0.065 | | 6x+8=6.5x+4 | | 3/4(36x+16)-1=-1/3(12x-12) | | x-3÷2=7÷2 | | x-3÷2=7 | | Y=5x+9(-2,-3) | | 5x+4-3=-(-2x+8) | | 3r/4-132=545 | | 9w-18=81 | | -5g+2.3=-14.2 | | 65-8x=1 | | x+11=−19 | | x+20+30=80 | | 15/4x²=2/3 | | .8(1-k)+2(k-2)=1 | | 8(1-k)+20(k-2)=1 | | 4p=2p-5 | | 5x=9+15x | | (12-x)4+12=128 |