If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x=5
We move all terms to the left:
2x^2+x-(5)=0
a = 2; b = 1; c = -5;
Δ = b2-4ac
Δ = 12-4·2·(-5)
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{41}}{2*2}=\frac{-1-\sqrt{41}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{41}}{2*2}=\frac{-1+\sqrt{41}}{4} $
| 5/6x+2/3=4x-12 | | 21(19x)=15(5x+1) | | 35p^2+4p-28p-4=0 | | -3-x6=-9 | | 7f-12/3f-1=5 | | 8u-6=3(u+8) | | 14-3(x+4)=4(x-1) | | 5/6x+2/3=4x-1/2 | | 4-2n+n2=0 | | F(x)=2x2-3x+8 | | 1-2m/3=5 | | 2-2x+x2=0 | | 7=y11.2 | | 45=10h=5 | | 45=10x=5 | | (X+9)(c+7)=0 | | -(6x-4)=4-6x | | 5c^2-7c-6=0 | | -65+3x=30-2x | | p2-7p+3=0 | | 7/2=r/10 | | -8n+491+5n)=-6n-14 | | 12=4(n+1) | | 5+2(3x+4)=1 | | 6(6x+1)-5x=8+2(x-1) | | 5x+(4x+6)=(10x-7) | | 4x(x-2)-3=7x | | p27p+3=0 | | 5(y+1)=55 | | -3(3s-6)-18=-2(6s+1)-3 | | 15=3(2q-1 | | 7-(2/x)=4 |