If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-100=-3x^2+96
We move all terms to the left:
2x^2-100-(-3x^2+96)=0
We get rid of parentheses
2x^2+3x^2-96-100=0
We add all the numbers together, and all the variables
5x^2-196=0
a = 5; b = 0; c = -196;
Δ = b2-4ac
Δ = 02-4·5·(-196)
Δ = 3920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3920}=\sqrt{784*5}=\sqrt{784}*\sqrt{5}=28\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{5}}{2*5}=\frac{0-28\sqrt{5}}{10} =-\frac{28\sqrt{5}}{10} =-\frac{14\sqrt{5}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{5}}{2*5}=\frac{0+28\sqrt{5}}{10} =\frac{28\sqrt{5}}{10} =\frac{14\sqrt{5}}{5} $
| 18=2+2m | | 16j−19j+8=–1 | | (4x+2)^=(7x-37)^ | | 5(x+6)+11=25–3x | | -7t-t(-16t)-7=17 | | z+11/5=4 | | r2-12r+32=0 | | 299-x=283 | | 8+3t=14t= | | 4(x+)=-8 | | 3+8m=10m-13 | | 7b-7b+b+2=11 | | 3+f/3=-15 | | 3-5v=23 | | 3q+2=17q= | | x=10+5/7x+8 | | 3-9s=9-7s | | 5+x=47;x=522 | | 5v^2+11v+7=0 | | (6x+4)+(3x-6)=90 | | 0.5v-10=7 | | 180x+7=12 | | 2w-(-15w)-(-1)=18 | | 108x+7=12 | | 5(g-80)=75 | | 15-2(3-2x)=46 | | .70+x=12 | | -y+5=2y-1 | | m/7–9=-5 | | 180x-7=12 | | 3/1/2+5=2/1/4x+6 | | 70+x=12 |