If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-10x+11=0
a = 2; b = -10; c = +11;
Δ = b2-4ac
Δ = -102-4·2·11
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{3}}{2*2}=\frac{10-2\sqrt{3}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{3}}{2*2}=\frac{10+2\sqrt{3}}{4} $
| (1.5x-2.4)2=(5.2x2-6.4) | | 6=2x-4/3 | | 5(3p+2)+4(p-7)=17 | | 90+2x+19+4x+23=180 | | 9+2x+19+4x+23=180 | | x+28=24 | | 1m-60=120 | | (3/5)x+1=25/9 | | 3(3x+2)=2(4x-4)+20 | | 2x-4+4x-7+x=6x+5 | | x+.2X=3500 | | 15x+4=14x-6 | | 9/8x+9=8 | | 7y-6y=5y+2 | | X^2-6/2-x^2+4/4=5 | | 3x-5+2x=6+x+1 | | 3x-13+2x+33+x=180 | | 7-3(5d-10)=67 | | 39+y=4(3+y) | | 11.4x+5=4.4x+26 | | 3(2y+3)=-35 | | 6x+8(6x+2)=5x-12 | | 2*x*x=576 | | 40x^2+15x=0 | | 4x-8+3x=8+9x-13 | | 40-20x=300 | | -3(5d-10)=67 | | .5a+.25=8 | | 6x-4x=45-39 | | (4n-18)+(n-9)=(151-5n) | | 8x+2(8x+5)=4x+5 | | 8x+15=6x+31 |