If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-10x+1=0
a = 2; b = -10; c = +1;
Δ = b2-4ac
Δ = -102-4·2·1
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{23}}{2*2}=\frac{10-2\sqrt{23}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{23}}{2*2}=\frac{10+2\sqrt{23}}{4} $
| 68=3y+14 | | 4x-29=3x-16 | | 3(x-2)+5+1=14 | | -3(3b+8)=-96 | | (7z+2)^2+16=0 | | v/4+16=28 | | 8(1-5x)+7=295 | | 45n^2-10n=0 | | 6x+4x-76=57-9x | | 7n-8=8=5n | | -4x-2(x+3)=8 | | 14=3-10x+4x | | 7x+5x-48=80-4x | | -3(x-4)=2(x=4)-7 | | -4x+7(1-3x)=-118 | | +5-x=5(x+2)+3 | | 4x-2(x=3) | | 15=18-4x | | 6x+2=2(-3+1) | | -4(-d-4)=-4+6(2d+6) | | 9x+3(2x-4)=18 | | (8)^x-5=512 | | 3(y+1)+2y=5(y-1)=5 | | 13x+21/7=16 | | 3(x+4)+2=8-(6-x) | | -66-6x=54 | | 3x/10-3x+4/5=3/5 | | 2(x+16)=100 | | 6x+2-x=37 | | 4x-4(2x+12)=-12 | | 5+u=4 | | 1/2(6x-4)=3x+2 |