If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-10x=10
We move all terms to the left:
2x^2-10x-(10)=0
a = 2; b = -10; c = -10;
Δ = b2-4ac
Δ = -102-4·2·(-10)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-6\sqrt{5}}{2*2}=\frac{10-6\sqrt{5}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+6\sqrt{5}}{2*2}=\frac{10+6\sqrt{5}}{4} $
| 7z+4-2z=10+4z-1 | | 1/5x-6=-4/5x-5 | | 1/3x+7=-2/3x+3 | | 0=x^2-32x+180 | | (25+38)÷k=9 | | 3/7x+1=-4/7x+8 | | -4(z+3)=6-3z | | 2p+20=40 | | (3y+11)+(4y+1)=180 | | 10x+21=7x-3 | | 5z+3z=7z+8 | | (2x+9)+(2x-5)=180 | | 2(m+3)=3(2+m) | | -13=2x-1 | | 250+(3x)=12x | | 4y/5-2=y/3+5 | | x+28.3=-4.7 | | 16^2x=8^2x+10 | | 36=3x^2+28x+24 | | 2x^2+4x-1040=0 | | 11b+1=2b/3+18 | | -32=-14/5n | | 5x+2/7=4x-9 | | 64x^2+48x+96=0 | | S=36w^2 | | 5z-7z=9z-4+6z | | x^2-8x-2x=0 | | 8x/5+1=-14 | | x+(x-53415)=302475 | | -1/8h=9 | | 1-1(4x-5+6x)=45 | | 6-8x/5=3x-7/2 |