If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-10x=5
We move all terms to the left:
2x^2-10x-(5)=0
a = 2; b = -10; c = -5;
Δ = b2-4ac
Δ = -102-4·2·(-5)
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{35}}{2*2}=\frac{10-2\sqrt{35}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{35}}{2*2}=\frac{10+2\sqrt{35}}{4} $
| 5=e-5 | | g(-3)=2+6 | | 5x=90+x/2 | | 1/2(2n+4)+6=-9+4(2n+1 | | -16x^2-630=0 | | 8x+7x+70=130 | | 11b=90+20 | | 8x/3+5/2=2x-3 | | 7x+2x+50=95 | | 2x+x+x+70=82 | | 12+t=4+9 | | x+.08x=947.2 | | Y=9x=4 | | x+.08x=60 | | m+16=5(3) | | x+x+x+x+25=61 | | 4x+3x+2x+45=360 | | 3•(x-2)+•(x+5)=44 | | x+x+x+x+25=62 | | u+1=-9 | | x+.08x=133 | | 2(4t-5)=-3(2t+1 | | x+2x+30=51 | | 0x+2=x | | x+.08x=1268.8 | | 3x/4+7=17 | | 8(x-2)-3(1-x)=9(X+2)+16 | | X+2x+50=68 | | 0=300-20x-4.905x^2 | | 2x-8=9-2× | | 8(x-2)-3(1-x)=9(X+16) | | m=41/2+22/3 |