If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-14x-147=0
a = 2; b = -14; c = -147;
Δ = b2-4ac
Δ = -142-4·2·(-147)
Δ = 1372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1372}=\sqrt{196*7}=\sqrt{196}*\sqrt{7}=14\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14\sqrt{7}}{2*2}=\frac{14-14\sqrt{7}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14\sqrt{7}}{2*2}=\frac{14+14\sqrt{7}}{4} $
| 4x-8+2=7x-13 | | -4(-5-b)=1/3(b+5 | | 2(x-5)-18=53-7x | | 19/24=5t/6-1/4 | | -.50r-12=-27 | | x-5=1-11(x+6) | | 6(m-34)=6m+12 | | x-2x-2=-(x+4)-4 | | 14x-10=4x+10 | | 25+r=(2+7r)+6r | | 5x+8=2(x+3) | | 1+15x=46 | | 25+r=-5(2r+8)+6r | | 0=3t^2-56.25t+12 | | 7x+1+20x-10=180 | | 6x+3=4x-23 | | -(x^3)+12x-16=0 | | 8(s-2.50)=6(s+2.00) | | 3/x+4/x=20 | | y+7(y+4)=28 | | 3(x-7)-5=3 | | 4(x+2)+8=-16 | | -5+2x=-(x-3)+2 | | 8(x+85)=9(x-50) | | 4(x-7)=12(x-5)+8 | | 2m-9=31 | | -2u=8u=-15 | | 4x-28=12x-68 | | 0.1x+0.2(x-7)=0.142 | | 2m-(3m-4)=-6+m | | 1-4/x=5 | | 12(5+2y)=4y-(- |