If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-15x+27=0
a = 2; b = -15; c = +27;
Δ = b2-4ac
Δ = -152-4·2·27
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3}{2*2}=\frac{12}{4} =3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3}{2*2}=\frac{18}{4} =4+1/2 $
| y(3y-17)=0 | | 3n(n-2)=0 | | N(9)=2n-1 | | x^2-2x-4=K(x-4) | | (3x-4)(2x+9)=0 | | X/11-7x/11=54/11 | | 2=(2/2x^2) | | 2p-4=3p+6 | | 3x–3=4x+36 | | 4x+36=3x–3 | | -28/27=-4/9*x | | 3x=(5x+6)/(2x+3) | | 2t^2+5t-1=0 | | 27=-9y+9 | | 4x+2=8×+18 | | 6y+6y+360=600 | | 3x+13=35-9x | | 7(x+9)=5(x−2) | | 6+8x=20=x | | 0,6x+1,7=1,2x-0,3 | | x+2=4/5 | | 6(4s+10)=48 | | Yx13÷63=105 | | 3(2l+10)=4 | | 10x2-4x=8 | | 3x2-5x=-4 | | 1,5(12-3x)=12(1,5-3x) | | 4x-5=2(x=5)= | | 10-(3+4x)=-7x+1 | | 0.6-y=0.6 | | 8x^+13x=0 | | 106=3x-8(5x-4) |