If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-18x-40=0
a = 2; b = -18; c = -40;
Δ = b2-4ac
Δ = -182-4·2·(-40)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{161}}{2*2}=\frac{18-2\sqrt{161}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{161}}{2*2}=\frac{18+2\sqrt{161}}{4} $
| d/3-16=-17 | | Y=9z=3 | | 8=–2(b–12) | | 3x-10+2x+8=7x-14 | | 34+g=46 | | 9+x=5+1 | | (10x-9)=(9x-4) | | -3(-3x+1)+25=151 | | 68=p-26 | | 3(t+8)=25.5 | | -6b-6.75-7.1b=1.5b-2.35 | | 10m^2-20m+40=-8 | | -m-3+1=-7-2m | | -56x^2-15x-1=0 | | 10x+10(x-4)=1,000 | | 0.08(x-2000)+3000=x | | x^2+25=-4x | | -y-12/5=3 | | 6-6x=7x-9x—4 | | 3a+(5a-8)+(3a+14)=180 | | x+7.3=12.5 | | b+2/3=4 | | (4x7)=(2x-1) | | 3+7z=-z+6z-15 | | 18+12x=-54 | | -118=9x+1 | | x+4=6+3x–10x | | 3(-10x+50)=69 | | x/11-2=-8 | | –y–125=3 | | (x+7)/4=-12 | | t(-13)=28 |