If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-19=1
We move all terms to the left:
2x^2-19-(1)=0
We add all the numbers together, and all the variables
2x^2-20=0
a = 2; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·2·(-20)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*2}=\frac{0-4\sqrt{10}}{4} =-\frac{4\sqrt{10}}{4} =-\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*2}=\frac{0+4\sqrt{10}}{4} =\frac{4\sqrt{10}}{4} =\sqrt{10} $
| 22p-5=10p+19 | | 2(z-3)=4(5-z) | | 6376,5a=6180,3a+784,8 | | x+0.4=6.4 | | 9x^2+5/9=0 | | 2×(2x+x)=60 | | (3x+1)5=9x-1 | | 2x+3=25-4,5x | | -900+0,4y=300-0,2y | | 6x2-16x+12=0 | | -16+n=28 | | 3y+(-4)=y+10 | | x/3+5=2x/3-3x/2 | | 8a-30+2a=5+10-a | | Y-28=7(x-7) | | 12x-31=11x-19 | | 12x4-31=11x-19 | | x5-9=0 | | 8/x=5/9x= | | Y=-2÷x | | 5y+10=6y+8 | | 35000+18x=30x | | 73x+438=1679 | | 2x+3x=125° | | (3-x)(x+1)=0 | | ¼x=9 | | 68=x–42 | | |x+4|=3x-6 | | (-4z)+8=-6z | | 68=x-42 | | x+1.29=4.11 | | 1278+630y=2000 |