If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-242=0
a = 2; b = 0; c = -242;
Δ = b2-4ac
Δ = 02-4·2·(-242)
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-44}{2*2}=\frac{-44}{4} =-11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+44}{2*2}=\frac{44}{4} =11 $
| 4x+2=10- | | 3/(1/)=x/(2/3) | | −4y=−12 | | 6t-4=-2 | | 16^2x+1=2^5-x | | 6=14-k | | 17=−5+2h | | 6(x-6)=5(x+10 | | -21=7/4x | | 7d+5=4d+32 | | 4+x/2=20 | | 7d+5=4d= | | -52=7u-6u | | t/2-4=-1 | | -3(r)-10=15(r)-8 | | 1x+11=4x-43 | | 3u^2+15=99 | | -3+9g=60 | | -4x+8=-6(x-2) | | -8d=-7d-7d | | 1/2x-9=39 | | 12+q=56 | | 4(x-6)^2+5=105 | | 4(x-20)^2=25 | | 8.4x-5=20.2 | | –8d=–7d−7d | | 6x+x+1+7-36=0 | | x-3=14-3x | | 7x1=41 | | 11/5b+2=3/5b=10 | | v-19=-12 | | 50=50+45t-5t^2 |