If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-28x+6=0
a = 2; b = -28; c = +6;
Δ = b2-4ac
Δ = -282-4·2·6
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-4\sqrt{46}}{2*2}=\frac{28-4\sqrt{46}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+4\sqrt{46}}{2*2}=\frac{28+4\sqrt{46}}{4} $
| 1/2x+6=1/3x+7 | | 1.6x=10 | | y=0.50(1.06)^10 | | 19=19v | | -7-9n=-10n | | -4−2n=-2n−2 | | |3x-1|=16 | | 50=40w+10 | | 5+5j=3+5j | | -2x+8=7-3x | | 8y+3-7y=-25 | | 5u+4=-10+7u | | 5r=2r-(-12) | | (D^3+6D^2+12D+8)y=0 | | 5-3x=55 | | 16x^2=784 | | -2(-x-20)=-2x-20 | | 16(x-1)^2=16 | | X+150=0.6(x+300) | | 55=5-3x | | -3+4z=3z | | X+60=0.6x | | 96.8+y=172.1 | | 3x-3=-3+9x | | 8k+2=6k | | -3(r=9)=-41 | | 3b-(-12)=6b+24 | | 32g=7g-105 | | (x+29)=(4x+1) | | -10+4h=2h | | 182.65=14.99+(.83+x) | | 12x+4=6x+16 |