If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-29x-126=0
a = 2; b = -29; c = -126;
Δ = b2-4ac
Δ = -292-4·2·(-126)
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-43}{2*2}=\frac{-14}{4} =-3+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+43}{2*2}=\frac{72}{4} =18 $
| n=9n+24 | | a=500000(1+0.875)5 | | n+4n-5n+n+2n=15 | | 167=-w+22 | | 3/7+t=20/21 | | 252-u=19 | | 50=-v+165 | | -6x+11=7-0x | | (T+8)x(-2)=12 | | 3b+2b+b+b=14 | | -5(-2x-6)=4(x+11) | | 13q-6q=7 | | 12r-11r=6 | | 12y-11y=16 | | 8g-3g=10 | | 10z-z=9 | | 7=19−3m | | -6=1+n-4 | | 11−3t=5 | | 1/2a+1=90 | | 11−2q=3 | | 0.75×n=15 | | 12−3y=3 | | w5-23=8 | | 10−2k=2 | | 3(1-3x)=8×+14 | | 4(2r+1)-(2r-5)=29 | | 31-7x=16+8x | | 28-2x=14+12x | | 13y=-25 | | 3+1/2n=15* | | 12−3u=6 |