If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-45=0
a = 2; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·2·(-45)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*2}=\frac{0-6\sqrt{10}}{4} =-\frac{6\sqrt{10}}{4} =-\frac{3\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*2}=\frac{0+6\sqrt{10}}{4} =\frac{6\sqrt{10}}{4} =\frac{3\sqrt{10}}{2} $
| -n=2n-4-5n/3 | | (3x/28)=9 | | 6x-121=61-3x | | 4x+6=-26x= | | 6(x+4)=12 | | 12−8n=8−10n | | 1-7m=13-m | | -7x-4(-2+39)=144 | | 2x-7=2x+21 | | 1−4a=7−6a | | -7x4(-2+39)=-144 | | x^2+18x+26=0 | | -7x-4(-2x+39)=-144 | | X-5/3x+1=x+2/x | | -9(x+2)(x+2)=(x-7)(x-7) | | x=20+3*6 | | 4a=3a-7a | | 11x-2=12+9x | | 9^x=10^2x | | x(x+3)=x(x+1)+4 | | (x+9)(x-4)=6(x+1) | | x(x+3)(2x+1)=4(x-3)(2x-5) | | 5+2x=x-7 | | 0.12(2x-5)+3x=81 | | x+5/x+2+x-5/x+2=4 | | X+8/10=8/5+x-9/2 | | 5+x-(12)=2x-(7) | | 7b^2-2=0 | | X+5/14=1/7+x-5/8 | | z/2+2=3 | | X/2+8=3(x+2) | | 13^x=62 |