If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-4x+5/3=(x1)(x+2)/2
We move all terms to the left:
2x^2-4x+5/3-((x1)(x+2)/2)=0
We calculate fractions
2x^2-4x+(-(x1(x+2)*3)/()+()/()=0
We calculate terms in parentheses: +(-(x1(x+2)*3)/()+()/(), so:We get rid of parentheses
-(x1(x+2)*3)/()+()/(
We add all the numbers together, and all the variables
-(x1(x+2)*3)/()+1
We multiply all the terms by the denominator
-(x1(x+2)*3)+1*()
We calculate terms in parentheses: -(x1(x+2)*3), so:We add all the numbers together, and all the variables
x1(x+2)*3
We multiply parentheses
3x^2+6x
Back to the equation:
-(3x^2+6x)
-(3x^2+6x)
We get rid of parentheses
-3x^2-6x
Back to the equation:
+(-3x^2-6x)
2x^2-3x^2-6x-4x=0
We add all the numbers together, and all the variables
-1x^2-10x=0
a = -1; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·(-1)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*-1}=\frac{0}{-2} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*-1}=\frac{20}{-2} =-10 $
| 7(3x+2)=5(2x-3)+7 | | 4r-12=-4 | | -5/4x+5/3=25/6 | | X+x+70+140+140=360 | | 3(x-6)=4(2x-8 | | -9=-20+x/5 | | 1/2x=-((5/4)x+1)+1/2x | | 10u=4u+30 | | 9×3n=27 | | 9x-9+2=7x-4-2 | | 10=4u+30 | | 3n+19=79 | | 2b+95=-115 | | 10y+33=0 | | 32(4x-2)=21 | | (1/2)x=-((5/4)x+1)+(1/2)x | | 7x-4+3x=4x+3-1 | | 53(x-6)=40 | | 53(y-6)=40 | | (6x+6=36) | | 48+3y=-21 | | 23x-8=10 | | (3x-1=23) | | 0+x=-12 | | 1X+2x+1x=56 | | 17-19x=10 | | 3p+7=10(p=-2) | | (2x-4=10) | | 19/2=13-7m | | 23(6x+30)=x+5(x+4)–2x. | | “3p+7=10(p=-2)” | | (3x-7)(x-7)=3x |