If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-4x-3=0
a = 2; b = -4; c = -3;
Δ = b2-4ac
Δ = -42-4·2·(-3)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{10}}{2*2}=\frac{4-2\sqrt{10}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{10}}{2*2}=\frac{4+2\sqrt{10}}{4} $
| 5x+(3×+2)=90 | | 9+11s-8=9s+16-3s | | 16=8x=1-3x | | x-160+1025=1345 | | 1/2(x –14)+11= 1/2 | | x2-2x-63=0 | | -5=ss-3 | | 4.3=5.9-0.2x | | -2b+9=-11 | | 5-3a=23-a | | 19*7x+10x+3=52 | | 4^8/(4^2)^-3/4^4=4^n | | 8n+5+2+10=-4n | | 3x-5=12x-5 | | 8y=2y+48 | | 4x÷10=4 | | j/7.2= | | 6*8*x=208 | | X²-2x-63=0 | | 30+6x=51 | | 2c+7=-1 | | -16=m+72 | | 3b-12=6b+6 | | 8(3-3x)=-96 | | 2c+7=-7 | | 3x+7x+20x=60 | | 3x-8=3(x-4)=1 | | 12u-4(u+1)=-68 | | x-156+517=713 | | a^2(a^2-4)=a^2-3 | | 2(3x-5)=4(2x-1) | | 8(3-3x=-96 |