If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-50=0
a = 2; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·2·(-50)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*2}=\frac{-20}{4} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*2}=\frac{20}{4} =5 $
| $0.75/n=36 | | 8+3(x-6)=4 | | 3x-65=10 | | 15x2+17x+4=0 | | 8(z+8)=-56 | | 27+27i=0 | | 3+2x+4=4x-3 | | -3/4j+2=-4 | | 10x-4+2x+13=3x+27 | | 5a+9=-126-10a | | 0.75/n=36 | | -0.6h-0.5=2.5 | | 5x2+4x-6=0 | | -.33333x-.25x=14 | | -3x+2=4x-3 | | 2.5(4)=5x-10 | | 5(2x-2)+3x=-10+2x | | 3x-2(-4x-1=-6 | | 18-5v=-2(2v-8) | | -3g+8=14 | | 10x=1110 | | 2x+35-23=180 | | -9z+13=-17z-19 | | 3x2+7x-6=0 | | 3(2x+5)+2x=-9 | | -4(4x-3)=-16x-12 | | 3(4x+8)=-34+22 | | 20+19d=-8+5d+16d | | c-3+ -14= -10 | | 2x+5x-6=3x+10 | | 13x-2x-8=8x-1 | | -3(x–7)+2=20-3(x-7)+2=20 |