If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-5x+2=0
a = 2; b = -5; c = +2;
Δ = b2-4ac
Δ = -52-4·2·2
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-3}{2*2}=\frac{2}{4} =1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+3}{2*2}=\frac{8}{4} =2 $
| x+0.11x=1.37 | | -1/5x-2/5=-2 | | 4x+10=-5x+18 | | -4x+10=-5x+19 | | 3(8x-9)=37 | | -10x+2/3=7/3-5x | | -7(x-6=-70 | | 1-4/7x=6/4 | | 8x2+8x=65918160 | | 6x2+6x=65918160 | | 6x2+6x=1940448 | | 8x2+8x=57120 | | 6x2+6x=1164240 | | 6x2+6x=1164241 | | 3x÷4+6=5x÷2-18 | | (y-0,3)/0,1=1 | | 6x2+6x=57120 | | 3x/4+6=5x/2-18 | | 2x2+7x-3=0 | | (x)/(9)+(2)/(3)=(4)/(9) | | T2+2t-8=0 | | 0=5y^2-26y+160 | | 0=5y^2-20y+160 | | (x-2)=7x+14 | | 3(1-4x)-(5x-4)=-20-3(2x-7) | | 3(6p-(21-5p))=4(7p-12) | | 3(6p-(21-5p))=28p-48 | | 42(3m+5)=66 | | -2z=72 | | {4}({2}{y}-{3})={3}({y}+{6}) | | 22y^2+17y-24=0 | | 18c^2-9c-20=0 |