If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-5x-25=0
a = 2; b = -5; c = -25;
Δ = b2-4ac
Δ = -52-4·2·(-25)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-15}{2*2}=\frac{-10}{4} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+15}{2*2}=\frac{20}{4} =5 $
| 16.75x-62=40 | | -10-10h-5=8h+3 | | x-9=x+6 | | 10x-7=-3x-97-5x | | 7d+10=9d-8 | | 0=12/18x+50/18 | | 5x+8+4x+4=84 | | 8(8x-8)=-256 | | 3/5x-7=8+1/5x | | 4/x=x/3x-5 | | 3/4x+6=16.5 | | x-2x(12-1/2)=2(4-2x)+20 | | n^2-5*n-1=0 | | 10+4u=6u | | n-20=-4 | | -10+7/4p=-38 | | 5c+4=−26 | | 385.75=190+0.75x | | 5(5k-6)-8=62 | | 9+4t=2t-7 | | x2+x-6=0 | | 5c+4=−26. | | -2(8-7n)=-114 | | (3x/2+4)-10=1/2(4x+16) | | -1/3m+1=-7 | | -6y-6+1=-9y+10 | | y/9+2=8 | | 2x2-2x-4=0 | | 190x+0.75=385.75 | | 5(-8r-5)-6r=113 | | 6.01x=42.671 | | 13(x+3)-4x=3(3x+4)-14 |