If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-5x=4=0
We move all terms to the left:
2x^2-5x-(4)=0
a = 2; b = -5; c = -4;
Δ = b2-4ac
Δ = -52-4·2·(-4)
Δ = 57
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{57}}{2*2}=\frac{5-\sqrt{57}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{57}}{2*2}=\frac{5+\sqrt{57}}{4} $
| 3+2(3n-13)=1 | | -22=-6-4n+4 | | 6^(3x-14)=1296 | | 4t=2t-2 | | 23-3t=8 | | 6-4f=-50 | | 10+2(z-5)=-5z+4 | | s/5+45=53 | | X2+32x+255=0 | | -2(x=3=3(x-7) | | 7x²=14x | | -5(x+3)=3x+24 | | 30=q/6+22 | | 1/6x+25=5/6x-31 | | 2x+3-3x=21 | | 4/3x-5=-13 | | 6t+2+3t17=10 | | -2+7x=-7+8x | | -2=2y-10 | | s/10-(-79)=82 | | -2c+1=-7 | | x^2+(x+1)^2+7^2=56^2 | | -8(d+20)=-24 | | 25-7-5x=12-3x | | 7-2a+5-5a=-2 | | ?x?=54 | | y/3+y=180 | | 32-(-4n)=-24 | | -9+1/2x=1.5 | | 7a+31=-4 | | (x^2)+((x+1)^2)+7=56 | | 3^(1-3x)=2^x |