If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-64=0
a = 2; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·2·(-64)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*2}=\frac{0-16\sqrt{2}}{4} =-\frac{16\sqrt{2}}{4} =-4\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*2}=\frac{0+16\sqrt{2}}{4} =\frac{16\sqrt{2}}{4} =4\sqrt{2} $
| X²-10x=3000 | | x2+33=30 | | 12h–11h=3 | | −5(p+5/3)=−4 | | −5(p+5/3)=−4 | | 16n–6n=20 | | 17d–11d=18 | | g10(0.4+0.5g)=4g | | 4x-10=x=10 | | 2x+30=-6(x+7) | | 2x+1+3x+2x+2(2x+3)+5x+1=96 | | 3(x=4)=18+x | | Y=-8=3(x+5) | | x2+31=29 | | -3x2+6=18 | | 2x+3x+4x+6x+7x+2=78 | | 6(y-9)=-6y+6 | | 2x+3x+4x+6x+7x2=78 | | 18+x·4-7=19 | | 5x+12-3x-19=-4 | | 18+x·4-7=19 | | x2-13x=30 | | -9y+30=-6(y-4) | | (p+6)*p=56 | | -15-6x=-6x-13 | | 3a+3a+5a+3a+3a+9+3=204 | | -22=3x+4(x-2) | | -2(2x-6)=9x+8 | | -3(-7x+4)=4x | | x2+x=20 | | p=56/p+6 | | x=4=2x=2 |