If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-6x-20=0
a = 2; b = -6; c = -20;
Δ = b2-4ac
Δ = -62-4·2·(-20)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-14}{2*2}=\frac{-8}{4} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+14}{2*2}=\frac{20}{4} =5 $
| z/10-6=3 | | 9(3x-5)-3x=-6x | | 2m^2+40m+100=0 | | -7y+4(y+4)=-2 | | -5x-2=-6x-8 | | 10a-8=40 | | 10a-80=40 | | 5s+16=151 | | x/9+7=-6 | | 2(-5x+8)=-8 | | a/4+3=12 | | x2−10x+41=0 | | -8+4(-6x+8)=-3 | | 2x+3x+4x+6x+7x=78 | | a÷4+3=12 | | 1+n=3+3n | | 5(3x-4)+4x+2=-1 | | x^2−10x+41=0 | | 5(-6x-2)-2x=-3 | | x4-5=2x | | 6-5(7x-1)=-13 | | 4(5x+4)+5x+5=-2 | | 2(4x-8)=-13 | | n+-17n=16 | | -2(3x-7)=2 | | 5x-10=110 | | -9x-10+11x+21=2 | | 5(5x+2)-3x+3=-2 | | 14n+3n-6n-2n=9 | | 10n-5n+2n-7n+n=5 | | 20(x-1)=200 | | -9x-7+11x=4 |