If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-8x+4=0
a = 2; b = -8; c = +4;
Δ = b2-4ac
Δ = -82-4·2·4
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{2}}{2*2}=\frac{8-4\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{2}}{2*2}=\frac{8+4\sqrt{2}}{4} $
| 15x-32=180 | | x=(3x+10)(5x-26) | | -20=4(3x+7)-3x+24 | | (15x-32)=180 | | 9–3x=33 | | 2-7x=9-8x | | r+104=3 | | |x+1|-7.8=6.2 | | p+39=128 | | 3x-7=-6x+110 | | p+57=79 | | p+60=90 | | −4−3n=−13 | | 3+2x6-4x8=35 | | 180=x+62.8+(2x-44.8) | | 10/x=6/3x+5 | | -30y+y+y=180 | | -2(1+7k)=-114 | | -4k=6-6k | | 3y^2-10=y+6 | | (a-4)/5=22 | | 8m2+16m+32=40 | | y9=41 | | 2x(x+17)=81 | | y(y+4)=-8 | | -7x-(-5-x=-9(2x-1)-1 | | 250+3.50x=300+2.25x | | −x3+21=0-x3+21=0 | | 156=3x+36 | | 250+3.50x=300+225x | | 4x=+5 | | 7x–5=23 |