If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-8x-13=0
a = 2; b = -8; c = -13;
Δ = b2-4ac
Δ = -82-4·2·(-13)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{42}}{2*2}=\frac{8-2\sqrt{42}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{42}}{2*2}=\frac{8+2\sqrt{42}}{4} $
| 3x-2/x=4 | | 7/4=x-3/x+3 | | 55.98+.14x=55.98+.12x | | X=(-3+2)x21 | | 7x+5(x+5)=-35 | | 2(1+5x)22= | | 3x+8x-7x-5=19 | | b2-10b+16=0 | | 56=1/2a2^a= | | ?x?=56 | | b2+4b-21=0 | | 56=1/2a2^ | | m2+2m-35=0 | | 4^x-6=4 | | 1-z/2=2+z/3 | | n2-2n-24=0 | | P=B/1+k | | -(x+-7)=-6x+8 | | 1/x=0.1042 | | 9w+3-4w=-13 | | y/(16/9)=3/4 | | 4s=8-2s+1 | | 5t-3(9t+6)=0 | | s÷3-4=2 | | 2a=4.6 | | 4x(2x+3)=56 | | 2(4w+5)=80 | | x+0.1x=114700 | | 2-6(-3x+2)=-100 | | 1=k-12 | | 5=7g+4-3g | | 3x+5x+7x=135 |