If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-8x=0
a = 2; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·2·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*2}=\frac{0}{4} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*2}=\frac{16}{4} =4 $
| 3x^-x+10=0 | | 5+z+z=9 | | 3=5-2p | | 2t^2-36=12t | | 2((x+3/x-3))^2-7(x+3/x-3)+6=0 | | n^2+n-51=0 | | 6v–4v–2=18 | | 3(y-4)=-0.5(24-6y) | | 37+w=5w-7 | | 2t^2+36=12t | | p^2-6p+26=6 | | 3.5+10m=8.72 | | 2/3m-1/3m+4=14 | | 3(6−f)−4=3f−43 | | -4p-8p=-6-7p | | 10-8=10(1+7x) | | 19-18f=4 | | 9*x+5=41+3*x | | n^2-3n-51=0 | | 1=4÷j-2 | | 7-1/16k=-2 | | 2(r–7)=10 | | 1=j÷4-2 | | 4 = 16d | | 18+7=-5(5x-5) | | -16u+19u=-18 | | 31/8p+3/4p=259/12 | | 17-3y=5y-1 | | 6(x+8)-3=45 | | 3y+4/2-6y=-2/5 | | n^2-8n-30=0 | | x=24÷3(2) |