If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-90=0
a = 2; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·2·(-90)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*2}=\frac{0-12\sqrt{5}}{4} =-\frac{12\sqrt{5}}{4} =-3\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*2}=\frac{0+12\sqrt{5}}{4} =\frac{12\sqrt{5}}{4} =3\sqrt{5} $
| 9a=11.6 | | 4x+37=380 | | -7x=10+(2) | | X+2/3x-1+1=6-x/x+1 | | 12x2-1728=0 | | 9x2-729=0 | | 1/2(x+4)=5x-8 | | 10x2-2560=0 | | 8x2-512=0 | | 45+36x=66+23x+31 | | 5x+7=2x-8x | | 3x-6=-4x+2 | | 3x-6=-4+2 | | 3(p-)=8+p | | y=3,6+7 | | 13x+8-9x+10=14x+10-2 | | 5x-405=0 | | 3(x+12)=5(2x+1) | | (y+5)^2=2y^2+18y+37 | | 3x-11/5+6=8 | | Mk=19° | | 9x+6=5x+8 | | 3x-11/5=8 | | 4x2-400=0 | | 8–3(x–4)=4 | | M+2/3m-1+1=6-m/m+1 | | 4x-1x2=x+7 | | 7x(x+2)=21 | | 7·(x+2)=21 | | (3w+4)-(5w+1)=w | | 2^x=0.36 | | 4/3x+5/5=13 |