If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=1000
We move all terms to the left:
2x^2-(1000)=0
a = 2; b = 0; c = -1000;
Δ = b2-4ac
Δ = 02-4·2·(-1000)
Δ = 8000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8000}=\sqrt{1600*5}=\sqrt{1600}*\sqrt{5}=40\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{5}}{2*2}=\frac{0-40\sqrt{5}}{4} =-\frac{40\sqrt{5}}{4} =-10\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{5}}{2*2}=\frac{0+40\sqrt{5}}{4} =\frac{40\sqrt{5}}{4} =10\sqrt{5} $
| 7x-3x=8+x+4= | | —11=-2+x/4 | | 2-3x+5=2x+1+x | | 5(x+2)+2(x-4)=-11 | | 8n+2n=-10 | | x+2x+x+3x+4x=1000 | | x-102=2x-20 | | 2x-20=x-70 | | m×2+12=26 | | 3h+5=2h=9 | | (2x-7)(2x-5)=0 | | -1/6(x+12)+1/3(x+3)=x+18 | | (x+12)+(x+3)=x+324 | | 11j-3=5j-15 | | 2e-28=9e+7 | | 14x-9x=8 | | 2/3x=2/5x+16 | | 10x4–3x2–4=0 | | 3x-5(2x+4)=4x | | 4x=100−6x | | 7x-8+2x^2=0 | | 95x-3000-0.2x^2=0 | | n+7=13n= | | X-5=2x^2+15 | | 2601-25x^2=0 | | 5=-4/5*5-b | | 4q+q+11=0 | | 16x^2+12x=27 | | 4/3n+9=20 | | s2-7s-18=0 | | 2(x-2)=4x-3 | | -62.5x+262.5=250 |