If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=182
We move all terms to the left:
2x^2-(182)=0
a = 2; b = 0; c = -182;
Δ = b2-4ac
Δ = 02-4·2·(-182)
Δ = 1456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1456}=\sqrt{16*91}=\sqrt{16}*\sqrt{91}=4\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{91}}{2*2}=\frac{0-4\sqrt{91}}{4} =-\frac{4\sqrt{91}}{4} =-\sqrt{91} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{91}}{2*2}=\frac{0+4\sqrt{91}}{4} =\frac{4\sqrt{91}}{4} =\sqrt{91} $
| 5x-38=18 | | 8/20=x/10 | | -10=x/4+6 | | 8÷n=4 | | 8x+14+4x-8+70=180 | | (4x+6)=46 | | -2a-40=8(1-a) | | m➗5=15 | | 5j-3j-10=4j=3j+8 | | 3.5=x-2.4 | | (x)=3x-1 | | F(x)=3x^2+4×-6 | | 3(-3m+1)=2(-4m+7) | | (5x+7)=(5x+7) | | H(t)=5^2t+10t | | 2x+2x+x-8=x | | 4=1x+1 | | 9n-7=-74 | | (4x+16)=90 | | -2=-7+n/8 | | 6/5=m/10 | | -10=m/4+2 | | 45(10m+30)=−3(m+3) | | 3x+4x=12+9/3 | | −6(3x−7)=−30 | | 50=6x+7x+3 | | t+3/14=3 | | 2=2.71828^(4x) | | 19(2m-16)=(2m+4) | | 3n+5=-14 | | -1.3r+9.9=-1.23-3.4r | | 8(10m+30)=-3(m+3) |