If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=20
We move all terms to the left:
2x^2-(20)=0
a = 2; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·2·(-20)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*2}=\frac{0-4\sqrt{10}}{4} =-\frac{4\sqrt{10}}{4} =-\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*2}=\frac{0+4\sqrt{10}}{4} =\frac{4\sqrt{10}}{4} =\sqrt{10} $
| -3(-7z+2)=-69 | | (-12+8x)(-10)=280 | | -(-3x+5)=-2 | | 9(x+2-11=88 | | 2x+5=74 | | -240=(8-8w)(-3) | | 72+36s=–4s2 | | -160=8(10-5y) | | 63=3+4x | | 2j+3/5=j=13/4 | | 3(-1-3w)=-93 | | x2-14x-32=0 | | 15u2+80u+65=0 | | 42=7+x/5 | | 16=7+x/3 | | 5+2(4-x=-13 | | 17+x/3=45 | | 5=7/1x | | -14=0.5n-6 | | 14=0.5n-6- | | x²-6x+9x=0 | | 50=14/x | | (h+4)(h-9)(h)=180 | | 4(x+10=72 | | 49=10+x/5 | | 2/3s-2/3=s|6+4/3 | | 12+n-18=26 | | 21-2y=3 | | (x+6)(x+8)-(x-7)(x-5)=0 | | 124-y=90 | | 64=h+3064=h+30. | | 32+x+31=90 |