If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=32x
We move all terms to the left:
2x^2-(32x)=0
a = 2; b = -32; c = 0;
Δ = b2-4ac
Δ = -322-4·2·0
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-32}{2*2}=\frac{0}{4} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+32}{2*2}=\frac{64}{4} =16 $
| (x^2-x-6)/(x^2-8+15)=0 | | 1/7(4(x-1)+19)=x | | x2+3x-1083=0 | | 4(-2x+9)=-2(3x-7 | | 3x=4x-16+6 | | x−2−8x=−2x−6+8x | | 175=1-1/5n | | 150-x=3*x-5 | | 3a+5=3a+ | | t+3t-7=4t=7 | | 150-x=3x-5 | | (2x-2)+35=180 | | 2x-2+35=180 | | .2n-1=175 | | 6x-12=3×-6 | | x+(x-46)+(x-35)+(1)/(2)x=360 | | 0.5*m=12 | | 1/5n-1=175 | | X+(x+3)=149 | | -10p-8=-8(6p-5)+10(2+4p | | 3,190,000/x=25,500 | | 0.5/m=12 | | -6x-9=6x-9 | | -6x-9=6x=9 | | 3-4(a-1)=9+a | | 108-12x=27 | | 8x+7=-8+4x+23 | | 16x-91+5=2 | | 1/6(x+6)+1/12(x-12)=x+9 | | 1x-61=7 | | 16j-15j-j+2j=14 | | 7.5x=2 |