If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=78
We move all terms to the left:
2x^2-(78)=0
a = 2; b = 0; c = -78;
Δ = b2-4ac
Δ = 02-4·2·(-78)
Δ = 624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{624}=\sqrt{16*39}=\sqrt{16}*\sqrt{39}=4\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{39}}{2*2}=\frac{0-4\sqrt{39}}{4} =-\frac{4\sqrt{39}}{4} =-\sqrt{39} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{39}}{2*2}=\frac{0+4\sqrt{39}}{4} =\frac{4\sqrt{39}}{4} =\sqrt{39} $
| z+-19=6 | | 121-60*x=59 | | 6(x-6)+4x+2=9x-44 | | 3x.5^2=150 | | 40•15•.25x=45•0.35x | | -100(5x-3)=330 | | 54=s+34 | | 2(6x+1=4(x-5)-2 | | 3x+2(-2)=x—2 | | (2-n)8=56 | | 2r+6=6r-10 | | x(x+5)^2=625 | | 40•15•0.25x=45•0.35x | | 4^x+1=31 | | 3x+38+5x+52+2x-10=180 | | 0=5-2x-3x^2 | | 3x+11=5-9 | | 7x-2x+27=60 | | (x^2+8x+12)(7x-14)=0 | | -y/8+2=-12 | | x(x+5)=625 | | -(4-y)=-9 | | 65=45+4x+8 | | 2(x+5)2+3=-15 | | 1.6x=100 | | 2r−1.6= -5.6 | | 10(-x-7)-10=-5(3x+7) | | 3x+57=28+8x | | 1.05^x=2.5 | | (5-11i)=(-10-4i) | | p-8=5(-8p+4)-6(6-7p) | | 3.7*b=0.0333 |